Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex.
نویسندگان
چکیده
Prefrontal cortex (PFC) functions, such as working memory, attention selection, and memory retrieval, depend critically on dopamine and NMDA receptor activation by way of an inverted-U-shaped pharmacological profile. Although single neuron responses in the PFC have shown some aspects of this profile, a network dynamic that follows the dopamine-NMDA dependence has not been identified. We studied neuronal network activity in acute medial PFC slices of adult rats by recording local field potentials (LFPs) with microelectrode arrays. Bath application of dopamine or the dopamine D1 agonist SKF38393 [(+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride] in combination with NMDA induced spontaneous LFPs predominantly in superficial cortex layers. The LFPs at single electrodes were characterized by sharp negative peaks that were clustered in time across electrodes revealing diverse spatiotemporal patterns on the array. The pattern formation required fast GABAergic transmission, coactivation of the dopamine D1 and NMDA receptor, and depended in an inverted-U profile on dopamine. At moderate concentrations of dopamine or the dopamine D1 agonist, the pattern size distribution formed a power law with exponent alpha = -1.5, indicating that patterns are organized in the form of neuronal avalanches, thereby maximizing spatial correlations in the network. At lower or higher concentrations, alpha was more negative than -1.5, indicating reduced spatial correlations. Likewise, at moderate dopamine concentrations, the avalanche rate and recurrence of specific avalanches was maximal with recurrence frequencies after a "power law"-like heavy-tail distribution with a slope of -2.4. We suggest that the dopamine-NMDA-dependent spontaneous recurrence of specific avalanches in superficial cortical layers might facilitate integrative and associative aspects of PFC functions.
منابع مشابه
Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex.
The atypical antipsychotic drug clozapine effectively alleviates both negative and positive symptoms of schizophrenia via unclear cellular mechanisms. Clozapine may modulate both glutamatergic and dopaminergic transmission in the prefrontal cortex (PFC) to achieve part of its therapeutic actions. Using whole cell patch-clamp techniques, current-clamp recordings in layers V-VI pyramidal neurons ...
متن کاملMorphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملD(1) dopamine receptors potentiate nmda-mediated excitability increase in layer V prefrontal cortical pyramidal neurons.
The interactions between N-methyl-D-aspartate (NMDA) and D(1) dopamine receptors in the rat prefrontal cortex were examined using whole-cell recordings from pyramidal neurons. The effects of NMDA, the D(1) agonist SKF38393, or both compounds combined were tested on measures of cell excitability. Both NMDA (10-100 microM) and SKF38393 (5-10 microM) independently increased the number of spikes an...
متن کاملInduction of c-fos mRNA in rat medial prefrontal cortex by antipsychotic drugs: role of dopamine D2 and D3 receptors.
The present studies compared the effects of acute and chronic administration of haloperidol or clozapine on c-fos mRNA expression in the rat medial prefrontal cortex. Acute administration of clozapine, but not haloperidol robustly increased c-fos mRNA expression in the infralimbic and prelimbic cortex of the rat. Even though most c-fos mRNA-expressing neurons in the clozapine- treated animals w...
متن کاملAge - dependent Actions of Dopamine on Inhibitory Synaptic Transmission in 3 Superficial Layers of Mouse Prefrontal Cortex
33 34 Numerous developmental changes in the nervous system occur during the first several 35 weeks of the rodent lifespan. Therefore many characteristics of neuronal function described at 36 the cellular level from in vitro slice experiments conducted during this early time period may not 37 generalize to adult ages. We investigated the effect of dopamine on inhibitory synaptic 38 transmission ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 31 شماره
صفحات -
تاریخ انتشار 2006